Andean flat-slab subduction through time
نویسنده
چکیده
The analysis of magmatic distribution, basin formation, tectonic evolution and structural styles of different segments of the Andes shows that most of the Andes have experienced a stage of flat subduction. Evidence is presented here for a wide range of regions throughout the Andes, including the three present flat-slab segments (Pampean, Peruvian, Bucaramanga), three incipient flat-slab segments (‘Carnegie’, Guañacos, ‘Tehuantepec’), three older and no longer active Cenozoic flat-slab segments (Altiplano, Puna, Payenia), and an inferred Palaeozoic flatslab segment (Early Permian ‘San Rafael’). Based on the present characteristics of the Pampean flat slab, combined with the Peruvian and Bucaramanga segments, a pattern of geological processes can be attributed to slab shallowing and steepening. This pattern permits recognition of other older Cenozoic subhorizontal subduction zones throughout the Andes. Based on crustal thickness, two different settings of slab steepening are proposed. Slab steepening under thick crust leads to delamination, basaltic underplating, lower crustal melting, extension and widespread rhyolitic volcanism, as seen in the caldera formation and huge ignimbritic fields of the Altiplano and Puna segments. On the other hand, when steepening affects thin crust, extension and extensive within-plate basaltic flows reach the surface, forming large volcanic provinces, such as Payenia in the southern Andes. This last case has very limited crustal melt along the axial part of the Andean roots, which shows incipient delamination. Based on these cases, a Palaeozoic flat slab is proposed with its subsequent steepening and widespread rhyolitic volcanism. The geological evolution of the Andes indicates that shallowing and steepening of the subduction zone are thus frequent processes which can be recognized throughout the entire system.
منابع مشابه
South-American plate advance and forced Andean trench retreat as drivers for transient flat subduction episodes
At two trench segments below the Andes, the Nazca Plate is subducting sub-horizontally over ∼200-300 km, thought to result from a combination of buoyant oceanic-plateau subduction and hydrodynamic mantle-wedge suction. Whether the actual conditions for both processes to work in concert existed is uncertain. Here we infer from a tectonic reconstruction of the Andes constructed in a mantle refere...
متن کاملThermal modelling of the Laramide orogeny: testing the £at-slab subduction hypothesis
The Laramide orogeny is the Late Cretaceous to Palaeocene (80^55 Ma) orogenic event that gave rise to the Rocky Mountain fold and thrust belt in Canada, the Laramide block uplifts in the USA, and the Sierra Madre Oriental fold and thrust belt in Mexico. The leading model for driving Laramide orogenesis in the USA is flat-slab subduction, whereby stress coupling of a subhorizontal oceanic slab t...
متن کاملThe crust and uppermost mantle structure of Southern Peru from ambient noise and earthquake surface wave analysis
a r t i c l e i n f o a b s t r a c t Southern Peru is located in the northern Central Andes, which is the highest plateau along an active subduction zone. In this region, the Nazca slab changes from normal to flat subduction, with the associated Holocene volcanism ceasing above the flat subduction regime. We use 6 s to 67 s period surface wave signals from ambient noise cross-correlations and ...
متن کاملCenozoic paleogeography of the eastern Andean foreland and adjacent hinterland in the Colombian Northern Andes: AAPG
s (underlined = graduate student; * = postdoctoral scholar) [128] Anderson, R.B., Long, S.P., Horton, B.K., Calle, A., and Stockli, D.F., 2014, New apatite and zircon (UTh)/He constraints on the timing of thrust-related exhumation in the southern Bolivian (21 ̊S) Andes: AGU Fall Meeting. [127] Barber, D., Stockli, D.F., Koshnaw, R.I., Horton, B.K., and Kendall, J.J., 2014, Detrital zircon U-Pb a...
متن کاملThe lack of correlation between flat slabs and bathymetric impactors in South America
Flat slab subduction has been attributed to various causes including mantle wedge dynamics, overriding by the upper plate, age of the subducting plate, and subduction of anomalously thick oceanic crust. One often favored explanation for flat slabs is the subduction of buoyant features on the oceanic plate in the form of an aseismic-ridge or oceanic plateau. We show through plate tectonic recons...
متن کامل